Improved lower bounds on extremal functions of multidimensional permutation matrices

نویسنده

  • Jesse Geneson
چکیده

A d-dimensional zero-one matrix A avoids another d-dimensional zero-one matrix P if no submatrix of A can be transformed to P by changing some ones to zeroes. Let f(n, P, d) denote the maximum number of ones in a d-dimensional n × · · · × n zero-one matrix that avoids P . Fox proved for n sufficiently large that f(n, P, 2) = 2k Θ(1) n for almost all k × k permutation matrices P . We extend this result by proving for d ≥ 2 and n sufficiently large that f(n, P, d) = 2k Θ(1) nd−1 for almost all d-dimensional permutation matrices P of dimensions k × · · · × k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal functions of forbidden multidimensional matrices

Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance in matrices has applications in computer science and engineering, such as robot motion planning and VLSI circuit design. A d-dimensional zero-one matrix A avoids another d-dimensional zero-one matrix P if no submatrix of A can be transformed to P by changing some ones to zeros. A fundamental problem is to ...

متن کامل

Bounding extremal functions of forbidden 0-1 matrices using (r, s)-formations

First, we prove tight bounds of n2 1 (t−2)! α(n)t−2±O(α(n)t−3) on the extremal function of the forbidden pair of ordered sequences (123 . . . k)t and (k . . . 321)t using bounds on a class of sequences called (r, s)formations. Then, we show how an analogous method can be used to derive similar bounds on the extremal functions of forbidden pairs of 0 − 1 matrices consisting of horizontal concate...

متن کامل

On the Column Extremal Functions of Forbidden 0-1 Matrices

A 0-1 matrix is a matrix in which every element is either 0 or 1. The weight extremal function ex(n, P ) counts the maximum number of 1’s in an n × n matrix which avoids a pattern matrix P . The column extremal function exk(m,P ) counts the maximum number of columns that a matrix with m rows and k 1’s per column can contain such that the matrix avoids P . Set weight and column extremal function...

متن کامل

Generalized matrix functions, determinant and permanent

In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.08447  شماره 

صفحات  -

تاریخ انتشار 2015