Improved lower bounds on extremal functions of multidimensional permutation matrices
نویسنده
چکیده
A d-dimensional zero-one matrix A avoids another d-dimensional zero-one matrix P if no submatrix of A can be transformed to P by changing some ones to zeroes. Let f(n, P, d) denote the maximum number of ones in a d-dimensional n × · · · × n zero-one matrix that avoids P . Fox proved for n sufficiently large that f(n, P, 2) = 2k Θ(1) n for almost all k × k permutation matrices P . We extend this result by proving for d ≥ 2 and n sufficiently large that f(n, P, d) = 2k Θ(1) nd−1 for almost all d-dimensional permutation matrices P of dimensions k × · · · × k.
منابع مشابه
Extremal functions of forbidden multidimensional matrices
Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance in matrices has applications in computer science and engineering, such as robot motion planning and VLSI circuit design. A d-dimensional zero-one matrix A avoids another d-dimensional zero-one matrix P if no submatrix of A can be transformed to P by changing some ones to zeros. A fundamental problem is to ...
متن کاملBounding extremal functions of forbidden 0-1 matrices using (r, s)-formations
First, we prove tight bounds of n2 1 (t−2)! α(n)t−2±O(α(n)t−3) on the extremal function of the forbidden pair of ordered sequences (123 . . . k)t and (k . . . 321)t using bounds on a class of sequences called (r, s)formations. Then, we show how an analogous method can be used to derive similar bounds on the extremal functions of forbidden pairs of 0 − 1 matrices consisting of horizontal concate...
متن کاملOn the Column Extremal Functions of Forbidden 0-1 Matrices
A 0-1 matrix is a matrix in which every element is either 0 or 1. The weight extremal function ex(n, P ) counts the maximum number of 1’s in an n × n matrix which avoids a pattern matrix P . The column extremal function exk(m,P ) counts the maximum number of columns that a matrix with m rows and k 1’s per column can contain such that the matrix avoids P . Set weight and column extremal function...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.08447 شماره
صفحات -
تاریخ انتشار 2015